charge-transfer bands at different wavelengths^{13,14} means that the type of ligand can be deduced from the optical spectrum. Another aspect of the reagent that should increase its value is its ability to form stable complexes with purine and pyrimidine bases in DNA.¹⁵ The chloropentaammineruthenium reagent may therefore prove to be of general utility in studies of the structural and dynamic properties of both amino and nucleic acid polymers.

Acknowledgments. The authors thank Dr. Henry Taube for helpful discussions, Dr. Michael Clarke for discussions and permission to read his manuscript prior to publication, and the Research Corporation, the National Institutes of Health through Grant GM-23303, and The Pennsylvania State University for financial support.

References and Notes

- R. J. Sundberg, R. F. Bryan, I. F. Taylor, Jr., and H. Taube, J. Am. Chem. Soc., 96, 381–392 (1974).
- R. J. Sundberg and G. Gupta, *Bioinorg. Chem.*, 3, 39–48 (1973).
 L. Vogt, T. Katz, and S. Wiberley, *Inorg. Chem.*, 4, 1157–1163 (1965).
 E. M. Crook, A. P. Mathias, and B. R. Rabin, *Biochem. J.*, 74, 234–238 (1960).
- (5) J. N. Armor, Ph.D. Thesis, Stanford University, 1970.
- (6) The extinction coefficients follow: for RNase A, $\epsilon_{278} = 9800 \text{ M}^{-1} \text{ cm}^{-17}$ and $\epsilon_{303} = 210 \text{ M}^{-1} \text{ cm}^{-1}$; for [(NH₃)₅Ru-His]Cl₃, $\epsilon_{278} = 1180 \text{ M}^{-1} \text{ cm}^{-1}$ and $\epsilon_{303} = 2100 \text{ M}^{-1} \text{ cm}^{-1.2}$
- (7) M. Sela and C. B. Anfinsen, Biochim. Biophys. Acta, 24, 229-235 (1957)
- (8) In reactions run for longer times than those used in these experiments, a broad band at ~350 nm appeared; the assignment of this band is currently under investigation.
- (9) Unpublished results in this laboratory show that cation-exchange chromatography is effective in resolving labeled ribonuclease A from the unmodified material. Therefore, it should be possible to isolate and identify ruthenium-containing peptides prepared under mild conditions, e.g., by protease digestion.
- (10) F. M. Richards and H. W. Wyckoff, "The Enzymes", Vol. 4, 3rd ed, P. D. Boyer, Ed., Academic Press, New York, N.Y., 1971, pp 647-806
- (11) P. Ford, De F. P. Rudd, R. Gaunder, and H. Taube, J. Am. Chem. Soc., 90, 1187-1194 (1968).
- (12) C. B. Anfinsen and H. A. Scheraga, Adv. Protein Chem., 29, 205-300 (1975).
 (1975).
 (13) C. G. Kuehn and H. Taube, *J. Am. Chem. Soc.*, **98**, 689–702 (1976).
 (14) J. A. Stritar and H. Taube, *Inorg. Chem.*, **8**, 2281–2292 (1969).
 (15) M. J. Clarke and M. Buchbinder, unpublished work.

C. R. Matthews,* P. M. Erickson D. L. Van Vliet, M. Petersheim

Department of Chemistry, The Pennsylvania State University University Park, Pennsylvania 16802 Received November 7, 1977

Selective Photoaggregation of Metal Atoms to Small Bimetallic Clusters of Known Size. The Chromium-Molybdenum System Cr_nMo_m

Sir:

Cryophotoclustering of metal atoms,¹ a new technique whereby matrix entrapped transition metal atomic species are photomobilized and photoaggregated at low temperatures, shows great promise for achieving cluster size distributions not hitherto accessible by conventional metal deposition-bulk thermal annealing matrix procedures.² By selectively exciting metal atomic species isolated in low temperature weakly interacting solids, at energies corresponding to their atomic resonance transitions, one can observe (for example, by optical spectroscopy) a highly controlled photoclustering phenomenon,

Figure 1. The low energy optical spectra of (A) $Cr/Kr = 1/10^3$, (B) $Mo/Kr = 1/10^4$, and (C) Cr/Mo/Kr = $1/1/10^3$ mixtures all deposited at 12K showing the characteristic absorptions of Cr_2 , Cr_3 , CrMo, Cr_2Mo , $CrMo_2$, Mo_2 , and Mo_3 ; (D) the result of 10 min h_2^{245} photolysis of sample C; (E) the result of 5 min $h\nu_{Cr}^{335}$ photolysis of sample D; (F) the result of 3 min $h\nu_{Cr}^{335}$ photolysis of sample A; (G) the result of 30-min $h\nu_{Mo}^{295}$ photolysis of sample B. (dep. \equiv deposition at 12K.)

whereby metal atom absorptions gradually decay and metal cluster absorptions concomitantly grow in.¹

The process can be visualized as a reaction of a photomobilized metal atom with the substrate: $M^{\dagger} + M \rightarrow M_2$; $M^{\dagger} +$ $M_2 \rightarrow M_3$; $M^{\dagger} + M_3 \rightarrow M_4$ etc. In all of the above, M^{\dagger} represents the photomobilized metal atom which is assumed to diffuse in the system. Thus the photomobilization and the diffusion processes would control the rate of growth of metal clusters. In this communication we provide information on the question of selective photomobilization of metal atoms. The mixed metal cluster system $Cr_n Mo_m^{1b,3}$ (where m = 3 to 0 and n = 0 to 3) was selected for study because details of the optical spectra of the various metal atom combinations in an argon matrix are known^{1b,3} (see Figure 1). (Spectra in a krypton matrix are essentially the same except for a small frequency shift.)

In experiments described here a dilute mixed metal/krypton matrix of atom ratio $Cr/Mo/Kr \simeq 1/1/10^4$ and a more concentrated atom matrix of composition $Cr/Mo/Kr \simeq 1/1/10^3$ were irradiated with light of 335 nm. Such radiation should selectively photomobilize Cr atoms. Radiation at 295 nm used in a separate experiment should selectively photomobilize Mo atoms. In Kr the $Cr(3d^54s^1) \rightarrow Cr(3d^44s^14p^1)$ band maximum lies at roughly 341 nm while the Mo($4d^55s^1$) \rightarrow Mo($4d^45s^15p'$)

Table I. Low Energy Optical Absorptions of $Cr_n Mo_m$ in Solid Argon and Krypton Matrices

	Cr ₂	CrMo	Mo ₂	Cr ₃	Cr ₂ Mo	CrMo ₂	M03
Ar	460/469	486/489	418/524	477	494	498	534
Kr	457/468	496	510/526	479	496	496	538

Figure 2. (A) The high energy optical spectra of $Cr/Mo/Kr = 1/1/10^3$ mixtures deposited at 12K showing the known absorptions of Cr, Mo, Cr₂, Mo₂, and Mo₃. (B and C) the result of 50- and 130-min $h\nu_{M0}^{295}$ photolysis of sample A and (D) the result of a further 22-min $h\nu_{Cr}^{335}$ photolysis of sample C. Note that the bands labeled "a" could be associated with mixed clusters $Cr_n Mo_m$. (DEP = deposition at 12K.)

Figure 3. A schematic representation of the photoselectivity experiments involving $Cr/Mo/Kr = 1/1/10^3$ mixtures deposited at 12K and then sequentially subjected to $h\nu_{MS}^{295}$ and $h\nu_{CT}^{355}$ photolyses. Note that the Cr and Mo atom absorbances are recorded on a scale $10 \times$ smaller than that used for the Cr_nMo_m clusters.

band maximum lies at 295 nm. There is, however, some nonselective excitation with irradiation at 345 nm because other transitions of $Mo(4d^55s^1 \rightarrow 4d^55p^1)$ lie at 340, 358, and 364 nm. The starting matrix prepared in solid Kr at 12 K clearly displayed the characteristic absorptions of Cr, Mo, Cr₂, CrMo, Mo_2 , Cr₃, Cr₂Mo, CrMo₂, and Mo₃. The spectrum of each species in a Kr matrix (apart from the Cr₂Mo/CrMo₂ combination) was reasonably well resolved. In a solid Ar matrix the Cr₂Mo/CrMo₂ combinations were also resolvable (Table 1).

When a matrix of known composition was irradiated at 295 nm to excite Mo, major *decay* of molybdenum absorptions was observed (Figure 2B,C) and selective growth of CrMo, CrMo₂, Mo₂, and Mo₃ (Figure 1D)⁴ was observed. Only slight *decay* of Cr (Figure 2B,C) was noted along with approximate *constancy* of Cr₂ and Cr₃. These observations argue strongly for selective photoexcitation and photomobilization of Mo atoms by radiation at 295 nm.

Similarly photoexcitation of Cr using radiation at 335 nm results in major *decrease* in the chromium absorptions (Figure 2D) and selective growth of Cr₃ and Cr₂Mo (Figure 1E)⁵ was observed. Only slight *decay* of Mo (Figure 2D) was noted along with slight growth of Cr₂ and approximate constancy of Mo₂ and Mo₃ (Figure 1E). A schematic representation of these photoselectivity effects is illustrated in Figure 3. These observations provide a strong case for selective photoexcitation and photomobilization of Cr atoms by radiation at 335 nm.

Noteworthy support for these proposals can be considered to stem from the simultaneous Cr/Mo atomic excitation (350 nm) control experiments, which displayed the expected growth patterns for all cluster species concomitant with decay of both Cr and Mo atomic species, that is designed nonphotoselectivity. The corresponding high dilution Cr/Mo/Kr $\simeq 1/1/10^4$ experiments also very effectively support our case for a highly selective photoaggregation process and will be reported in detail in a forthcoming publication.⁶

We feel that the experimental evidence that we have presented for selective photomobilization and photoaggregation of metal atomic species, as monitored by our mixed metal atomic-bimetallic cluster optical experiments, is overwhelmingly positive. Nevertheless further experimental probes of these new and interesting photophysical-photochemical phenomena, together with an intensive search for still higher clusters are planned for these as well as other metallic and bimetallic systems. The impetus for such "mini-alloy" cluster experiments, besides the intrinsic chemical novelty of "fewatom-bimetallics", is the long-range goal of probing the "molecular metal cluster-bulk metal particle interface",² the objective being a fundamental enquiry into bimetallic cluster electronic, geometric, chemisorptive, and catalytic properties as a function of the size and composition of the cluster.⁹

Acknowledgment. The generous financial assistance of the National Research Council of Canada Operating New Ideas and Strategic Energy Grants Programmes, the Atkinson Foundation, the Connaught Fund, Imperial Oil of Canada, the Lash Miller Chemical Laboratories, and Erindale College are all gratefully appreciated.

References and Notes

- (1) (a) H. Huber and G. A. Ozin, *Inorg. Chem.*, **17**, 155 (1978); (b) W. E. Klotzbucher and G. A. Ozin, *J. Mol. Catal.*, **3**, 195 (1977).
 (2) See, for example, G. A. Ozin, "Cryochemistry", M. Moskovits and G. A. Ozin, Ed., Wiley, New York, N.Y., 1976, and references cited therein.
 (2) (c) W. E. Klotzber, M. (Charlet, M. Karana, Charlet, C
- (a) W. E. Klotzbucher, H. Kolari, J. Norman, Jr., and G. A. Ozin, *Inorg. Chem.*, 16, 297 (1977); (b) W. E. Klotzbucher and G. A. Ozin, *ibid.*, 16, 984 (1977); (3)(c) E. P. Kundlg, M. Moskovits, and G. A. Ozin, Nature, 254, 503 (1975).
- (4) As Cr_2 remains essentially invariant under these circumstances we favor Mo[†] + CrMo \rightarrow CrMo₂ rather than Mo[†] + Cr₂ \rightarrow Cr₂Mo.
- (5) As Mo₂ remains essentially invariant under these circumstances we favor Cr[†] + CrMo → Cr₂Mo rather than Cr[†] + Mo₂ → CrMo₂.
 (6) It is important to note here that, under a wide variety of concentration con-
- ditions in separate Cr/Kr(Ar), Mo/Kr(Ar), and Cr/Mo/Kr(Ar) experiments, bulk diffusion incurred by thermal annealing (12-40K for Ar, 12-60K for Kr) leads only to "catastrophic clustering" as seen by the general decay of all Cr_n , Mo_m , and Cr_nMo_m spectral absorbances (presumably arising from nonselective diffusion-aggregation processes, leading mainly to high clusters characterized by broad bulk metal-like, far-UV absorptions). This could imply "thermally activated clustering" for the lower diatomic, triatomic, etc. species which might well be kinetically impeded at the low temperatures employed in our matrix experiments. (Incidentally, this is not the case for silver, where at least $Ag_{2,3,4,5}$ clusters can be generated by thermal-annealing techniques in Ar, Kr, Xe, and CH₄.^{1,7,8}) It is therefore conceivable, that the facile photogeneration of CrMo, Mo_2 , Cr_3 , Cr_2Mo , $CrMo_2$, and Mo_3 is, in fact, the outcome of "photoactivated" nucleation events involving either elec-tronically excited or "thermally hot" atomic/cluster moieties. Further reearch is required to establish this pertinent aspect of photoaggregation.
- (7) W. Schulze, H. U. Becker and H. Abe, Int. Conf. Matrix Isolation Spectrosc., paper 8.5 (June 1977).
- (8) H. Huber, S. Mitchell, and G. A. Ozin, unpublished work.
- (9) J. H. Sinfelt, Acc. Chem. Res. 10, 15 (1977).

Werner E. Klotzbücher, Geoffrey A. Ozin*

Lash Miller Chemistry Laboratory and Erindale College University of Toronto, Toronto, Ontario, Canada Received September 27, 1977

Preparation and Isolation of $\Delta^{1,4}$ -Bicyclo[2.2.0]hexene

Sir:

We wish to report details of the preparation and properties of the highly strained olefin, $\Delta^{1,4}$ -bicyclo[2.2.0]hexene (1). Three previous papers have reported evidence for the presence of this compound, but none has described isolation of the pure

material.¹ Bromochloride 2 was prepared as previously described.² Compound **2** can be electrochemically reduced only with difficulty ($E_{1/2} = -2.50$ V vs. saturated calomel electrode in dimethylformamide),1b behavior not characteristic of 1,2-dihalides.³ Dipole moment measurements of $2^{2b,4}$ suggest a large intervector angle between the carbon-halogen bonds. Since the molecule may also be twisted, these two effects could explain the observed electrochemical behavior.⁵

Controlled current electroreduction of 400 mg of 2 in 40 mL of dimethylformamide⁶ in a divided cell, with 0.18 M tetramethylammonium hexafluorophosphate7 was conducted at -14 °C over a stirred mercury pool cathode⁸ while the apparatus was maintained at 2×10^{-3} Torr pressure in a vacuum line. Volatile effluents were collected in cold traps maintained at -23, -45, and -95 °C, respectively, while 2.0 F of current were passed. The current was held at 100 mA, and resulted in an applied voltage of 10-14 V. The -95 °C trap contained 10-30 mg of a white crystalline solid, melting below -60 °C, which could be identified as $\Delta^{1,4}$ -bicyclo[2.2.0]hexene (1) from the behavior and properties described below.

In contrast to its behavior in dilute hydrocarbon solution,^{1c} the pure olefin 1 is extremely reactive. It can be transferred from a -45 °C bath to a -200 °C bath over a short path length with some loss to polymer, but at -23 °C the neat olefin polymerizes with a half-time of <10 s. Vapor pressures of >1Torr have not been obtained, owing to polymerization. The polymer is a clear solid, insoluble in most solvents: IR (cm^{-1}) 3000, 2960, 2880, 1425, 1225, 1010.

The ¹H NMR (CD₂Cl₂) of **1** consisted of a sharp singlet at 3.24 ppm.^{1a} In dilute solution (~1%) in C₆D₅CD₃, the olefin disappeared with a half-time of 420 s at 0 °C. The product was an insoluble polymer. The ${}^{13}C$ NMR of 1 at -50 °C showed peaks at 163.5 and 43.7 ppm (CD_2Cl_2) (relative to Me_4Si). The low field peak, assigned to the olefinic carbon, is significantly further downfield than any other simple olefinic resonance heretofore reported.¹¹ The mass spectrum, recorded at 2.1 kV, show m/e (percent of base peak) of 80 (49) (M⁺), 79 (100), 77 (28), and 43 (26).

The Raman spectrum of 1 was recorded at -190 °C using a sample prepared by condensing vapor onto a copper plate. Spectra were recorded of unannealed and annealed (at - 110)°C) films excited with \sim 50 mW of 514.5-nm Ar⁺ laser radiation. Both C=C and C-H bands were observed. The C=C band appeared at 1661 cm^{-1} in the solid and was shifted when measured in solution (1664 cm⁻¹ in CD₂Cl₂ at -50 °C, 1673 cm⁻¹ in cyclopropane at -56 °C). The C-H bands appeared at 2843, 2923, 2951, and 2961 cm⁻¹ and were consistent with CH₂ modes in normal strained alicyclic hydrocarbons.12a

The infrared spectrum of a solid film of 1, obtained by vapor deposition onto a cesium iodide plate at -196 °C, was recorded before and after annealing at -110 °C. The C-H bands appeared at 2832, 2930, and 2965 cm^{-1} ; the latter two appear normal for aliphatic CH_2 .^{12b} Only five bands appear between $650 \text{ and } 200 \text{ cm}^{-1}$. They were found at 424, 410, 400 (sh), 393, and 288 cm^{-1} and seem to account for the fundamental outof-plane deformation modes. It was not possible to measure the gas phase infrared spectrum of 1, even in a 10-m multipass cell, owing to decomposition of the olefin at room temperature. The appearance of strong, low frequency fundamental bands in the infrared and their complete absence in the Raman spectrum are consistent with D_{2h} symmetry, characteristic of a planar skeleton. The unusual downfield ¹³C chemical shift of the olefinic carbon in 1 suggests a tendency toward allenelike sp character.

Although the olefin is reactive with cyclopentadiene,^{1a,b} it failed to undergo cycloaddition with 2,3-dimethyl-1,3-butadiene in CD_2Cl_2 solution at temperatures below those necessary for polymerization.

© 1978 American Chemical Society